Chromatin StructureHistone ModificationsTools & Technology

AACR Special Conference on Chromatin and Epigenetics in Cancer

The advancements in Next-Generation sequencing technology have recently helped researchers uncover the importance of epigenetic modifying enzymes in many human cancers.  Numerous different cancer cells contain mutations in genes that encode histone-modifying enzymes and chromatin-remodeling factors, leading scientists and doctors to conclude that misregulated epigenetic processes are of central importance …

Tools & Technology

Initial ENCODE Project Data Published!

The human genome project revealed the sequence of the roughly 3 billion DNA bases and approximately 25,000 genes found within our cells.  But exactly how that information is interpreted to, for example, be able to produce the nearly 300 distinct cell types found in the human body is still unknown. …

The kidneys are responsible for salt reabsorption in the body
Aging, Environment, & DiseaseHistone Modifications

Epigenetic and dietary regulation of salt-sensitive hypertension

Hypertension (also known as high blood pressure) is a disease that is often heritable and can be a direct consequence of dietary factors.  A high intake of dietary salt is one factor that can potentially affect the expression of genes involved in regulating blood pressure, and thus contributes to the …

Skeletal muscles affected by FSHD
Aging, Environment, & DiseaseRegulatory RNA

Epigenetic regulation of a non-coding RNA implicated in FSHD pathogenesis

Facioscapulohumeral muscular dystrophy (FSHD) is a common and debilitating myopathy very frequently associated with decreased D4Z4 repetitive element copy number at chromosome 4q35. The exact molecular mechanism driving FSHD is unknown, however, epigenetic dysregulation is suspected to be a major contributing factor.